

Write an in-depth log on the latest research in the area of peritoneal dialysis for a mature audience on my blog, ffeser.me

I have gathered substantial research on the latest developments in peritoneal dialysis. Let me compile this into a comprehensive, in-depth blog post for a mature audience.

Latest Research in Peritoneal Dialysis: A Comprehensive Review

Peritoneal dialysis continues to evolve as a critical home-based treatment modality for patients with end-stage kidney disease, with recent research revealing significant advances across multiple domains. From biocompatible dialysis solutions and innovative technologies to improved patient outcomes and novel approaches to preserving kidney function, the field is experiencing a period of remarkable progress.

Biocompatible Dialysis Solutions: A New Standard of Care

One of the most transformative developments in peritoneal dialysis has been the widespread adoption of biocompatible dialysis solutions. Traditional peritoneal dialysis fluids—characterized by their acidic pH, high glucose content, and elevated levels of glucose degradation products (GDPs) and advanced glycation end-products (AGEs)—have long been recognized as contributors to peritoneal membrane damage, leading to complications such as peritoneal fibrosis and the devastating condition known as encapsulating peritoneal sclerosis. [1]

The introduction of dual-chamber systems in the 2000s marked a watershed moment. These systems separate acidic glucose solutions from neutral electrolyte solutions, mixing them immediately before use to create a neutral pH dialysate with significantly reduced GDP levels. The clinical impact has been substantial. In Japan, where comprehensive data has been collected, the incidence of encapsulating peritoneal sclerosis decreased from 2.5% during the era of acidic dialysate (1999-2003) to 1.0% after widespread adoption of neutral solutions (2008-2012). [1]

Neutral pH, low-GDP solutions have demonstrated multiple benefits beyond reducing peritoneal damage. A 2025 Cochrane review examining 42 studies with 3,262 participants found that these biocompatible solutions resulted in better preservation of residual kidney function and urine output with high certainty. The balANZ trial and subsequent multicenter studies have shown that biocompatible solutions are associated with significantly longer time to anuria, with one study reporting a hazard ratio of 0.66 for developing anuria compared to conventional solutions. [2] [3]

Novel Dialysis Solutions Under Investigation

The research pipeline includes several promising alternative formulations designed to further improve biocompatibility. A dialysis fluid containing xylitol and L-carnitine has shown particular promise in reducing glucose content while protecting peritoneal mesothelial and vascular endothelial cells in vitro. Phase III randomized controlled trials are currently planned to investigate the efficacy and safety of this innovative solution. [1]

Alanyl-glutamine (AlaGln)-supplemented peritoneal dialysis fluid represents another avenue of investigation. A randomized controlled trial demonstrated that AlaGln-enriched solutions significantly improved biomarkers associated with peritoneal membrane integrity, immune competence, and systemic inflammation compared to unsupplemented solutions. Notably, peritonitis occurred in patients using standard fluids but not in those receiving AlaGln-enriched solutions, suggesting a potential preventive role. [1]

Molecular hydrogen (H₂)-enriched peritoneal dialysis solutions are also under clinical investigation. Studies indicate that H₂-enriched solutions mitigate peritoneal damage and may contribute to maintaining peritoneal integrity. Clinical trials have reported no adverse effects, with some patients exhibiting significant improvements in peritoneal mesothelial cell markers in the effluent, suggesting a role for H₂ in promoting mesothelial cell regeneration. The protective effects of hydrogen have even shown promise in treating established encapsulating peritoneal sclerosis, with case studies demonstrating clinical improvement when hydrogen-enriched dialysate was used for both hemodialysis and peritoneal lavage. [4] [1]

Icodextrin, a glucose polymer osmotic agent, has gained traction particularly for patients with high peritoneal transport characteristics. Approved in China in 2021, icodextrin offers superior ultrafiltration compared to glucose-based solutions and reduces patients' exposure to peritoneal glucose, making it especially suitable for patients with suboptimal blood glucose control. A Cochrane review found that patients receiving icodextrin-based solutions were 70% less likely to experience uncontrolled episodes of fluid overload. [5] [3]

Remote Patient Monitoring: The Digital Revolution in Peritoneal Dialysis

The integration of remote monitoring technology represents a paradigm shift in peritoneal dialysis management. Modern automated peritoneal dialysis machines now enable direct communication between clinics and patients' homes through cloud-based platforms such as Baxter's Sharesource system. This real-time monitoring allows clinicians to detect clinically relevant issues such as catheter dysfunction, non-adherence to prescribed therapy, and early complications before they become serious. [6] [7]

The clinical evidence supporting remote monitoring is compelling. A cluster-randomized controlled trial involving 21 hospitals and 801 patients found that remote monitoring was associated with significantly reduced all-cause mortality (55 versus 33 deaths, P=0.01) and cardiovascular deaths (24 versus 13 deaths, P=0.05) compared to conventional automated peritoneal dialysis. The study also demonstrated lower rates of adverse events and hospitalizations related to cardiovascular disease, fluid overload, or insufficient dialysis efficiency. [8]

An observational study from the Gulf Cooperation Council countries examined 92 patients over six months and found that remote monitoring enabled early detection and outpatient management of non-infectious complications such as altered ultrafiltration status, fluid management issues, and catheter-related problems. The study reported reductions in infectious complications, non-infectious complications, and admissions for peritoneal dialysis complications compared to the year before remote monitoring implementation. [7]

Importantly, remote monitoring has proven particularly valuable during healthcare crises. The COVID-19 pandemic highlighted the advantages of peritoneal dialysis as a home-based therapy that minimizes hospital exposure. Dialysis facilities using remote monitoring were able to maintain continuity of care while reducing the need for in-person visits, contributing to lower infection rates among peritoneal dialysis patients compared to those receiving in-center hemodialysis. [9]

Artificial Intelligence and Chatbot Technology

The application of artificial intelligence to peritoneal dialysis care is opening new frontiers in patient education and self-management. A study from Taiwan involving 440 patients demonstrated that an AI-powered chatbot delivering automated education and clinical reminders significantly reduced exit-site and tunnel infection rates, with peritonitis rates decreasing from 0.93 to 0.8 per 100 patient-months. Patient satisfaction was exceptionally high, with 91.7% of participants agreeing with "overall satisfaction with patient intelligent chatbot application". [11]

These AI-based educational tools incorporate interactive games designed to predict peritonitis and exit-site infection risks based on patient adherence patterns. By providing immediate feedback and personalized risk assessments, chatbots help patients understand the consequences of non-compliance and reinforce proper technique, addressing a critical factor in preventing infections. [12]

Incremental Peritoneal Dialysis: Less is More

Incremental peritoneal dialysis—the practice of initiating therapy with fewer than the standard four daily exchanges and gradually increasing the dialysis dose as residual kidney function declines—has gained substantial evidence supporting its clinical, environmental, and economic benefits. [13] [14]

Clinically, incremental peritoneal dialysis appears to preserve residual kidney function more effectively than full-dose therapy. A South Korean observational study using propensity score weighting found that incremental peritoneal dialysis was associated with a lower risk of developing anuria (hazard ratio 0.70) compared to conventional full-dose peritoneal dialysis. A meta-analysis including 75,292 patients (115 on incremental peritoneal dialysis) reported slower residual kidney function decline in incremental versus full-dose dialysis (p=0.007). [14] [13]

The preservation of residual kidney function carries profound clinical significance. Multiple studies have demonstrated that each increment in glomerular filtration rate or urine volume is associated with substantial reductions in mortality risk. In a reanalysis of the landmark CANUSA study, each 0.5 mL/min/1.73m² increment in GFR was associated with a 12% lower risk of death,

while each 250 mL increment in 24-hour urine volume was associated with a 36% lower risk of death. [15] [16]

Beyond preserving kidney function, incremental peritoneal dialysis reduces glucose exposure dramatically. One study estimated annual glucose exposure reductions of 20.4 kg, 14.8 kg, and 8.3 kg per patient for those starting with one, two, or three exchanges respectively, compared to standard four-exchange regimens. This reduced glucose load translates to lower risks of weight gain, hyperglycemia, dyslipidemia, and metabolic syndrome—all common complications associated with standard peritoneal dialysis. [13]

The environmental benefits are equally compelling. Incremental peritoneal dialysis can reduce water usage, plastic waste, and carbon emissions by 30-45% compared to full-dose peritoneal dialysis. For a patient starting with one daily exchange instead of four, the estimated annual reductions include 25,056 liters of water saved from bag production alone and 139.2 kg less plastic waste. Given that packaging materials account for approximately 80% of peritoneal dialysis's carbon footprint, incremental approaches offer a meaningful contribution to environmental sustainability. [13]

Quality of life improvements are notable as well. Patients on incremental regimens gain substantial free time—estimated at 18.1, 13.1, and 7.4 additional free days per year for those starting with one, two, or three exchanges respectively. This enhanced flexibility and reduced treatment burden may increase treatment acceptability and contribute to better adherence. [13]

Peritonitis Prevention: Evolving Strategies

Despite advances in peritoneal dialysis technology, peritonitis remains a significant challenge and the leading cause of technique failure. The International Society for Peritoneal Dialysis (ISPD) recommends annual peritonitis rates of less than 0.4 episodes per patient-year, with more than 80% of patients remaining peritonitis-free annually. [17] [18]

Recent research has identified both modifiable and non-modifiable risk factors for peritonitis. Modifiable factors include low educational level, foreign origin, and poor adherence to aseptic technique, while non-modifiable factors include advanced age and multiple comorbidities. Educational interventions tailored to individual patient characteristics have proven effective. One prospective cohort study in Japan found that patients who received a multidisciplinary predialysis education (MPE) program had significantly lower peritonitis rates (0.29 versus 0.64 episodes per person-year, p<0.001) compared to those who did not receive MPE. [17]

The 2024 update of the ISPD Clinical Practice Guideline for the Prevention and Management of Peritoneal Dialysis Associated Infection in Children introduced important recommendations regarding antibiotic therapy and prophylaxis based on evolved antibiotic susceptibilities and stewardship principles. The "flush before fill" procedure—flushing dialysate tubing with sterile dialysate before instilling solution into the abdomen—remains a cornerstone of infection prevention, effectively removing bacterial contamination when performed properly. [19] [18]

Antifungal prophylaxis has emerged as an important secondary prevention strategy. The 2016 and 2022 ISPD guidelines recommend antifungal prophylaxis in peritoneal dialysis patients receiving antibiotics, as antibiotic exposure is a major risk factor for fungal peritonitis, which

carries significant mortality. Studies examining compliance with antifungal prophylaxis protocols have shown effectiveness in preventing secondary fungal peritonitis. [20] [21]

Urgent-Start Peritoneal Dialysis: Expanding Access

Urgent-start peritoneal dialysis—defined as initiating dialysis within two weeks of catheter placement—has emerged as a safe and effective alternative to hemodialysis for patients requiring immediate kidney replacement therapy. This approach is particularly valuable for late-referred chronic kidney disease patients who would traditionally be initiated on hemodialysis with temporary vascular access, which carries high risks of bacteremia, sepsis, and catheter malfunction. [22] [23]

A 2025 single-center observational study including 62 patients demonstrated that urgent-start automated peritoneal dialysis with shortened break-in periods (catheter opening within 12 hours) was safe and effective. The study reported catheter dysfunction in 14.5%, migration in 9.7%, leakage in 12.9%, and replacement in 11.3% of patients—rates comparable to conventional peritoneal dialysis initiation. Importantly, no cases of peritonitis or hemoperitoneum were observed, and significant improvements in metabolic parameters were achieved. [22]

A comparative study examining outcomes between urgent-start peritoneal dialysis and hemodialysis in 223 patients found no significant difference in 90-day mortality (20.8% for peritoneal dialysis versus 29.1% for hemodialysis, adjusted hazard ratio 1.26, 95% CI 0.73-2.18). Both modalities achieved similar reductions in urea, potassium, and metabolic acidosis within the first seven days. [24]

The operational advantages of urgent-start peritoneal dialysis include avoiding surgical consultation, operating room scheduling, and preoperative evaluation when catheters are placed by interventional radiologists. This efficiency translates to reduced hospital costs and shorter lengths of stay, as procedures can be performed on an outpatient basis. [23]

Wearable and Portable Dialysis Devices

The development of wearable and portable peritoneal dialysis devices represents an ambitious effort to further enhance patient independence and quality of life. The automated wearable artificial kidney (AWAK) for peritoneal dialysis is a compact device weighing approximately 3 kg that integrates patented sorbent technology to enable continuous peritoneal dialysis on-the-go. [25] [26]

AWAK automates peritoneal dialysis by providing small tidal infusions of dialysate through a purse-sized controller containing a disposable cartridge that regenerates used dialysate, a small pump, and a reservoir containing approximately 500 mL of dialysate. The system automatically removes dialysate in 500 mL quantities, regenerates it, and infuses it back into the patient, repeating this process eight times per hour. Clinical trials have demonstrated that the device is safe and effective for removing uremic toxins while maintaining fluid and electrolyte balance. [26]

The WEAKID (WEarable Artificial KIDney) system represents another innovative approach, utilizing continuous flow of dialysate inside the abdominal cavity combined with continuous

regeneration of spent dialysate through sorbent chambers. A first-in-human clinical trial is examining the safety and efficacy of this system in 12 patients over six treatment sessions. [28]

These wearable devices have received breakthrough device designation from the U.S. Food and Drug Administration, acknowledging their potential to address the significant challenge of facilitating connection to large dialysis machines and the requirement for long hours of stationary therapy. If fully developed and approved, such devices could revolutionize peritoneal dialysis by providing continuous treatment without lifestyle disruption. [25] [26]

Combined Peritoneal Dialysis and Hemodialysis Therapy

For patients experiencing peritoneal dialysis-related complications such as resistant hypervolemia, frequent peritonitis, or peritoneal membrane failure, combined peritoneal dialysis and hemodialysis therapy has emerged as a viable alternative to complete transition to hemodialysis. In this model, patients receive peritoneal dialysis on certain days and hemodialysis on others, benefiting from both modalities. [29]

A 2025 retrospective study comparing 28 patients transitioned to hemodialysis with 26 patients receiving combined therapy found that both groups demonstrated significant improvements in Kt/V, volume stabilization, and cardiovascular stability. No statistically significant differences in laboratory parameters were observed between groups, suggesting that combined therapy provides comparable efficacy to conventional hemodialysis. [29]

The advantages of combined therapy include preservation of residual renal function through continued peritoneal dialysis, effective volume and urea clearance through hemodialysis, reduced peritoneal exposure (lowering peritonitis risk), and potentially longer maintenance of residual urine output—a factor directly related to mortality. For patients who might otherwise completely abandon peritoneal dialysis, this hybrid approach offers a middle ground that preserves some of the benefits of home therapy. [29]

Long-Term Outcomes and Mortality

A comprehensive 25-year longitudinal study from a European peritoneal dialysis unit examined 497 patients who initiated peritoneal dialysis between 1996 and 2021, revealing important insights into long-term outcomes. The study reported an overall five-year mortality rate of 40%, with age emerging as the leading factor influencing patient survival. Risk factors for mortality included continuous ambulatory peritoneal dialysis (compared to automated peritoneal dialysis), older age, cardiovascular disease, and use of renin-angiotensin-aldosterone system inhibitors. [30]

At five years, 48% of patients remained on peritoneal dialysis, demonstrating improved technique survival compared to historical rates. The study attributed improvements in outcomes to advances in peritoneal dialysis solutions and remote monitoring technologies, which have contributed to changes in peritoneal dialysis outcomes and increased adoption over the years. [30]

Comparing peritoneal dialysis to hemodialysis remains complex, with outcomes varying by patient population and time on dialysis. A large propensity-matched study using Taiwan's National Health Insurance Research Database found that after adjusting for confounders,

hemodialysis-only patients exhibited significantly lower all-cause mortality compared to peritoneal dialysis-only patients (hazard ratio 0.77, 95% CI 0.72-0.83). However, most international registries report equivalent five-year survival between modalities, with peritoneal dialysis potentially offering survival advantages in the first two years, especially for younger, less comorbid patients likely to receive transplantation. [31] [32]

An urgent-start comparison study found no significant mortality difference at 90 days between peritoneal dialysis and hemodialysis (20.8% versus 29.1%, p>0.05), suggesting comparable safety for both modalities in acute initiation scenarios. These findings reinforce that peritoneal dialysis remains a viable first-line option for kidney replacement therapy when patients are appropriately selected. [24]

Quality Improvement Initiatives

The field has increasingly recognized that many peritoneal dialysis complications, particularly infection-related technique failure, are primarily dialysis-unit performance issues amenable to quality improvement interventions. Research from the Australia-New Zealand registry, Peritoneal Dialysis Outcomes and Practice Patterns Study (PDOPPS), and collaborative quality improvement initiatives have demonstrated that peritonitis rates can be substantially reduced through systematic approaches. [31]

A Canadian quality improvement study focused on optimizing renin-angiotensin system inhibitor use—medications that offer important benefits for preserving residual kidney function and peritoneal membrane integrity—through implementation of a "PD Passport" clinical documentation tool. The initiative increased renin-angiotensin system inhibitor utilization from 41% to 59% without compromising patient safety, as evidenced by stable blood pressure and potassium levels. [33]

The Centers for Medicare and Medicaid Services' End-Stage Renal Disease Quality Incentive Program links facility payments directly to performance on quality measures, creating financial incentives for high-quality care. During the COVID-19 pandemic, these programs were temporarily waived to allow facilities to focus on emergency response, highlighting the need for flexibility in quality programs during public health crises. [34] [10]

Barriers to Home Dialysis Adoption

Despite the many advantages of peritoneal dialysis, adoption rates remain suboptimal in many countries. A national survey in the United States identified six major barriers preventing wider use: [35]

Patient and Caregiver Barriers:

- 1. Fear of performing dialysis at home
- 2. Limited space at home for equipment and supplies
- 3. Need for more home-based support services

Provider and System Barriers:

4. Poor home dialysis training programs

- 5. Lack of reimbursable mechanisms for ongoing support
- 6. Shortage of experienced home dialysis staff

These barriers are compounded by unreimbursed costs for electricity, water, and home renovations, which can total thousands of dollars annually and pose significant financial burdens for patients. Countries with higher peritoneal dialysis prevalence, such as Denmark, Australia, New Zealand, Canada, and the United Kingdom, typically provide reimbursement for these costs, suggesting that removal of financial disincentives may be necessary to encourage adoption. [36]

Global Perspectives and Future Directions

The future of peritoneal dialysis faces a fundamental challenge: inequity of access. In Europe, variation in peritoneal dialysis uptake exceeds 10-fold across the continent, driven by differing economic drivers, variation in patient empowerment, physician attitudes and bias, small center size, lack of experience, nursing staff shortages, poor organizational culture, and insufficient educational opportunities. [37] [31]

Worldwide, peritoneal dialysis use remains highly variable, with additional challenges including high costs of peritoneal dialysis fluid and lack of universal healthcare coverage in many regions. To address these challenges and promote equitable access to dialysis globally, point-of-care dialysis fluid generation represents a potentially transformative innovation that could reduce costs and environmental impact. [31]

The COVID-19 pandemic provided valuable lessons about the importance of home dialysis as a resilient modality during healthcare crises. Peritoneal dialysis programs that incorporated remote monitoring, telemedicine, and multidisciplinary care coordination were able to maintain high-quality care while minimizing infection risk. These experiences have reinforced calls for increased investment in home dialysis infrastructure and training to prepare for future public health emergencies. [10] [9]

Conclusion

Research in peritoneal dialysis continues to advance on multiple fronts, from molecular innovations in dialysis solution biocompatibility to technological breakthroughs in remote monitoring and wearable devices. The evidence increasingly supports personalized approaches to peritoneal dialysis prescription, including incremental initiation strategies that preserve residual kidney function while reducing environmental impact and improving quality of life.

Critical challenges remain, particularly in expanding equitable access to peritoneal dialysis and addressing the barriers that prevent patients from choosing home therapies. Quality improvement initiatives have demonstrated that systematic approaches can substantially reduce complications and improve outcomes. The integration of artificial intelligence, remote monitoring, and novel biocompatible solutions offers promise for further enhancing the safety and effectiveness of peritoneal dialysis.

As the global burden of end-stage kidney disease continues to grow, peritoneal dialysis will play an increasingly important role in providing accessible, sustainable kidney replacement therapy. The ongoing research and innovation documented here point toward a future where peritoneal dialysis offers patients greater independence, better preservation of residual function, fewer complications, and improved survival—while simultaneously addressing the environmental and economic sustainability of kidney care worldwide.

**

- 1. https://pmc.ncbi.nlm.nih.gov/articles/PMC11856993/
- 2. https://pmc.ncbi.nlm.nih.gov/articles/PMC3358767/
- 3. https://www.cochrane.org/evidence/CD007554_biocompatible-dialysis-fluids-peritoneal-dialysis
- 4. https://pmc.ncbi.nlm.nih.gov/articles/PMC4335940/
- 5. https://www.dovepress.com/evidence-summary-of-personalized-management-of-peritoneal-dialysis-vol-peer-reviewed-fulltext-article-JMDH
- 6. https://pubmed.ncbi.nlm.nih.gov/41123424/
- 7. https://warmjournal.org/impact-of-automated-peritoneal-dialysis-remote-monitoring-on-hospitalization
 -events/
- 8. https://pubmed.ncbi.nlm.nih.gov/39165115/
- 9. https://pmc.ncbi.nlm.nih.gov/articles/PMC11277704/
- 10. https://www.nature.com/articles/s41581-022-00618-4
- 11. https://pubmed.ncbi.nlm.nih.gov/37698229/
- 12. https://academic.oup.com/ndt/article/38/Supplement_1/gfad063c_4729/7196249
- 13. https://pmc.ncbi.nlm.nih.gov/articles/PMC12540302/
- 14. https://www.nature.com/articles/s41598-019-46654-2
- 15. https://advancingdialysis.org/peritoneal-dialysis/peritoneal-dialysis-and-residual-kidney-function/
- 16. https://pmc.ncbi.nlm.nih.gov/articles/PMC10503572/
- 17. https://onlinelibrary.wiley.com/doi/full/10.1111/jorc.12490
- 18. https://pubmed.ncbi.nlm.nih.gov/39313225/
- 19. https://journals.sagepub.com/doi/10.1177/08968608241274096
- 20. https://academic.oup.com/ofid/article/12/Supplement_1/ofae631.1239/7987496
- 21. https://www.sciencedirect.com/science/article/pii/S2468024924031802
- 22. https://pmc.ncbi.nlm.nih.gov/articles/PMC12476777/
- 23. https://evtoday.com/articles/2025-aug/urgent-start-peritoneal-dialysis-patient-selection-and-procedur-al-considerations
- 24. https://pubmed.ncbi.nlm.nih.gov/40694419/
- 25. https://www.medicaldevice-network.com/news/awak-sgh-begin-wearable-peritoneal-dialysis-device-trial/
- 26. https://pmc.ncbi.nlm.nih.gov/articles/PMC7812841/
- 27. https://www.asn-online.org/about/press/releases/ASN_PR_20191108_2019KidneyWeekRelea.pdf
- 28. https://ctv.veeva.com/study/first-in-human-study-to-examine-safety-of-a-new-peritoneal-dialysis-devi-ce-weakid-in-end-stage-kid
- 29. https://pmc.ncbi.nlm.nih.gov/articles/PMC12418792/

- 30. https://academic.oup.com/ckj/article/18/8/sfaf215/8193697
- 31. https://pmc.ncbi.nlm.nih.gov/articles/PMC11581766/
- 32. https://pubmed.ncbi.nlm.nih.gov/40421870/
- 33. https://pubmed.ncbi.nlm.nih.gov/40990964/
- 34. https://www.cms.gov/medicare/quality/end-stage-renal-disease-esrd-quality-incentive-program
- 35. https://ldi.upenn.edu/our-work/research-updates/6-major-barriers-that-stop-patients-from-doing-hom-e-dialysis/
- 36. https://pmc.ncbi.nlm.nih.gov/articles/PMC10843223/
- 37. https://academic.oup.com/ckj/article/17/Supplement_2/ii9/7905971
- 38. https://pubmed.ncbi.nlm.nih.gov/17875571/
- 39. https://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0134047
- 40. https://academic.oup.com/ndt/article/26/5/1702/1891513
- 41. https://www.sciencedirect.com/science/article/pii/S1470211824030860
- 42. https://ajkdblog.org/2024/03/12/nephmadness-2024-adjusting-quality-versus-quantity-in-peritoneal-dialysis/
- 43. https://clinicaltrials.gov/study/NCT01209273
- 44. https://freseniusmedicalcare.com/en-us/insights/articles/covid-19-icu-lessons/
- 45. https://www.sciencedirect.com/science/article/pii/S2590059525002092
- 46. https://bmjopen.bmj.com/content/12/11/e065795
- 47. https://pmc.ncbi.nlm.nih.gov/articles/PMC10018246/
- 48. https://www.kidney.org.uk/home-dialysis-campaign-manifesto
- 49. https://www.clinicaltrials.gov/study/NCT03571451
- 50. https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2025.1676396/full
- 51. https://www.clinicaltrials.gov/study/NCT07059962
- 52. https://www.nature.com/subjects/peritoneal-dialysis
- 53. https://ajkdblog.org/2024/03/01/nephmadness-2024-peritoneal-dialysis-region/
- 54. https://www.clinicaltrials.gov/study/NCT00966615
- 55. https://www.sciencedirect.com/science/article/pii/S2468024925005480
- 56. https://www.healthaffairs.org/doi/10.1377/hlthaff.2024.01661
- 57. https://www.clinicaltrials.gov/study/NCT04034966
- 58. https://www.asn-online.org/education/kidneyweek/2025/program-session-details.aspx?sessId=507315
- 59. https://onlinelibrary.wiley.com/doi/10.1111/hdi.13267?af=R
- 60. https://www.isrctn.com/ISRCTN16169961
- 61. https://ispd.org/research-projects/
- 62. https://www.sciencedirect.com/science/article/pii/S2468024924018096
- 63. https://journals.sagepub.com/doi/10.1177/0896860820982218
- 64. https://pmc.ncbi.nlm.nih.gov/articles/PMC8396924/
- 65. https://spj.science.org/doi/10.34133/jbioxresearch.0022

- 66. https://www.scientificarchives.com/article/peritoneal-imaging-may-be-the-last-piece-of-the-puzzle-fo r-precision-evaluation-of-peritoneal-function
- 67. https://www.revistanefrologia.com/en-remote-patient-monitoring-management-in-articulo-S021169952
 https://www.revistanefrologia.com/en-remote-patient-monitoring-management-in-articulo-S021169952
 https://www.revistanefrologia.com/en-remote-patient-monitoring-management-in-articulo-S021169952
- 68. https://www.sciencedirect.com/science/article/pii/S2590059524000797
- 69. https://www.nature.com/articles/s41598-023-29741-3
- 70. https://academic.oup.com/ndt/article/40/Supplement_3/gfaf116.1661/8296457
- 71. https://clinicaltrials.gov/study/NCT06533254
- 72. https://pubmed.ncbi.nlm.nih.gov/23413278/
- 73. https://www.sciencedirect.com/science/article/abs/pii/S1043466625001127
- 74. https://onlinelibrary.wiley.com/doi/10.1111/jorc.70031
- 75. https://academic.oup.com/ndt/article/28/2/447/1864951
- 76. https://karger.com/books/book/120/chapter/5060035/Remote-Patient-Management-in-Peritoneal-Dialysis
- 77. https://rarediseases.org/rare-diseases/encapsulating-peritoneal-sclerosis/
- 78. https://www.sciencedirect.com/science/article/pii/S0929664623002383
- 79. https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2014.00470/full
- 80. https://jptcp.com/index.php/jptcp/article/view/9978
- 81. https://ispd.org/guidelines/
- 82. https://journals.sagepub.com/doi/10.1177/03000605251340162
- 83. https://www.sciencedirect.com/science/article/pii/S2468024925001019
- 84. https://karger.com/ajn/article/doi/10.1159/000542835/920082/Early-Onset-Peritonitis-and-Outcomes-of-Peritoneal
- 85. https://www.hcplive.com/view/peritoneal-dialysis-hemodialysis-yield-similar-survival-benefits-kidney-f ailure
- 86. https://karger.com/bpu/article/54/9-10/565/929377/A-Comparison-of-Clinical-Outcomes-in-Urgent-Sta
- 87. https://revistanefrologia.org/index.php/rcn/article/view/243
- 88. https://www.sciencedirect.com/science/article/pii/S2468024924027396
- 89. https://pubmed.ncbi.nlm.nih.gov/32063188/
- 90. https://pubmed.ncbi.nlm.nih.gov/41133139/?fc=None&ff=20251024111118&v=2.18.0.post22+67771e2
- 91. https://ispd.org/media/pdf/membersonly/H1_D0_1030A_Bargman_Prof_Joanne Bargman_CME-HowtoPreserveResidualPenalFunction.pdf
- 92. https://pmc.ncbi.nlm.nih.gov/articles/PMC3515903/
- 93. https://karger.com/bpu/article/doi/10.1159/000548852/937417/Revolutionizing-Dialysis-The-Dual-Impact-of
- 94. https://pubmed.ncbi.nlm.nih.gov/19270196/
- 95. https://www.sciencedirect.com/science/article/pii/S0085253815560845
- 96. https://journals.sagepub.com/doi/10.1177/08968608251385614
- 97. https://www.sciencedirect.com/science/article/pii/S0085253815528585

- 98. https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2018.01853/full
- 99. https://academic.oup.com/ndt/article/39/2/222/7222382
- 100. https://www.nature.com/articles/nrneph.2012.205
- 101. https://www.kidney.org/sites/default/files/v36a_a1.pdf
- 102. https://homedialysis.org/news-and-research/blog/599-improving-access-to-home-dialysis-my-testimo ny
- 103. https://drgura.com/wearable-artificial-kidney/
- 104. https://insight.jci.org/articles/view/86397
- 105. https://www.nature.com/articles/s41598-025-18015-9
- 106. https://www.sciencedirect.com/science/article/pii/S027263862400790X
- 107. https://academic.oup.com/ckj/article/16/3/422/6751919
- 108. https://www.kidney.org/news-stories/dream-starting-to-come-true-wearable-kidneys
- 109. https://freseniusmedicalcare.com/en-us/insights/gmo-dialogues/home-dialysis/
- 110. https://www.sciencedirect.com/science/article/pii/S0272638625000538